Stability results for approximation by positive definite functions on compact groups
نویسندگان
چکیده
We consider interpolation methods defined by positive definite functions on a compact group. Estimates for the smallest and largest eigenvalue of the interpolation matrix in terms of the localization of the positive definite function on G are presented and we provide a method to get positive definite functions explicitly on compact semisimple Lie groups. Finally we apply our results to construct well localized positive definite basis functions having nice stability properties on the rotation group SO(3). AMS Subject Classification(2000): 41A05, 43A35, 41A30, 43A75
منابع مشابه
A meshless technique for nonlinear Volterra-Fredholm integral equations via hybrid of radial basis functions
In this paper, an effective technique is proposed to determine thenumerical solution of nonlinear Volterra-Fredholm integralequations (VFIEs) which is based on interpolation by the hybrid ofradial basis functions (RBFs) including both inverse multiquadrics(IMQs), hyperbolic secant (Sechs) and strictly positive definitefunctions. Zeros of the shifted Legendre polynomial are used asthe collocatio...
متن کاملArmin Iske * Scattered Data Approximation by Positive Definite Kernel Functions
Kernel functions are suitable tools for scattered data interpolation and approximation. We first review basic features of kernel-based multivariate interpolation, before we turn to the construction and the characterization of positive definite kernels and their associated reproducing kernel Hilbert spaces. The optimality of the resulting kernel-based interpolation scheme is shown. Moreover, we ...
متن کاملDecomposition of H*-Algebra Valued Negative Definite Functions on Topological *-Semigroups
In the present paper, among other results, a decomposition formula is given for the w-bounded continuous negative definite functions of a topological *-semigroup S with a weight function w into a proper H*-algebra A in terms of w-bounded continuous positive definite A-valued functions on S. A generalization of a well-known result of K. Harzallah is obtained. An earlier conjecture of the author ...
متن کاملGENERALIZED POSITIVE DEFINITE FUNCTIONS AND COMPLETELY MONOTONE FUNCTIONS ON FOUNDATION SEMIGROUPS
A general notion of completely monotone functionals on an ordered Banach algebra B into a proper H*-algebra A with an integral representation for such functionals is given. As an application of this result we have obtained a characterization for the generalized completely continuous monotone functions on weighted foundation semigroups. A generalized version of Bochner’s theorem on foundation se...
متن کاملShift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups
We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...
متن کامل